Cell Classification Guide¶
This guide provides comprehensive information about napari-mAIcrobe's cell classification system, including model selection, usage, and custom model integration.
π§ Overview¶
napari-mAIcrobe uses deep learning models to automatically classify cell cycle phases based on fluorescence features. The plugin includes 6 pre-trained models optimized for S. aureus under different imaging conditions, and supports user-trained custom models.
οΏ½ Pre-trained Models¶
DNA + Membrane - S.aureus DNA+Membrane Epi (Epifluorescence) - S.aureus DNA+Membrane SIM (SIM)
DNA Only - S.aureus DNA Epi - S.aureus DNA SIM
Membrane Only - S.aureus Membrane Epi - S.aureus Membrane SIM
Values in the original confusion matrices indicate high diagonal accuracy; membrane-only often performs comparably to dual-channel models, DNA-only slightly lower.
π§ Model Selection (Decision Tree)¶
Do you have both DNA and membrane staining? - Yes β DNA+Membrane - Super-resolution? β S.aureus DNA+Membrane SIM - Standard resolution? β S.aureus DNA+Membrane Epi - No β Single-channel - DNA only β DNA SIM (SIM) or DNA Epi (Epi) - Membrane only β Membrane SIM (SIM) or Membrane Epi (Epi)
π οΈ Custom Model Integration¶
Model requirements - Format: Keras .keras - Input: Membrane, DNA, or Membrane+DNA - Max size: preprocessing crop size (default 50 px)
Build your dataset with Compute pickles (Plugins β mAIcrobe β Compute pickles). See Tutorials β Generate Training Data. Train using the provided Jupyter notebook.
π§ͺ Using in Compute cells¶
- Enable "Classify cell cycle"
- Select pre-trained model or choose Custom and select the .keras file
- Results appear in the Labels properties (e.g., Cell Cycle Phase)
π Further Reading¶
- Tutorials β Generate Training Data
- API Reference